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We derive the Fokker-Planck equation for the soliton amplitude distribution function in the

damped nonlinear Schrédinger system under the influence of thermal fluctuations.

The regular

solutions are obtained in terms of the Kummer functions. Physical applications are discussed.
PACS number(s): 05.40.4+j, 03.40.Kf, 66.90.+r, 42.25.—p

I. INTRODUCTION

Fluctuations are well known to play an important
role in various soliton-bearing systems (see, e.g., the re-
views [1] and [2]). In the presence of thermal fluctua-
tions and of the dissipative damping related to them by
the fluctuation-dissipation theorem (FDT) [3], solitons
can be regarded as particles constituting a rarefied gas
brought into contact with a thermostat [4]. Following
this idea one can calculate various statistical character-
istics of the soliton gas. In Ref. [4], the mean kinetic en-
ergy of a topological soliton (kink) and some other quan-
tities have been found within the framework of the sine-
Gordon (SG) model incorporating the lossy term and the
randomly fluctuating force:

¢tt’¢mm+Sin¢=_a¢t+f($’t)’ (1)

where f(z,t) is a Gaussian random function defined by
the correlations

(f(=,t)) =0, (2a)

(f(z,t)f(z',t")) = 26(x — z")6(t — t').

The correlation amplitude €? in Eq. (2b) is related to the
damping constant a in Eq. (1) according to the FDT [4]:

€2 = 2kTa, (3)

(2b)

where T is the temperature and k is the Boltzmann con-
stant.

In this work, the aim is to consider statistical prop-
erties of the gas of envelope solitons, which are the
small-amplitude limit of the breather solutions in the
SG model. Confining attention to small amplitudes, we
will obtain from Eq. (1) a nonlinear Schrodinger (NLS)
model with dissipative and fluctuation terms. The statis-
tical properties of the soliton gas are determined by the
Fokker-Planck (FP) equation for the distribution func-
tion of solitons. For the case opposite that considered
here, i.e., for the small-frequency SG breathers, the FP
equations have been derived and analyzed in Ref. [5]. The
solutions to that FP equation (Ref. [5]) described the de-
cay of the small-frequency breathers into kink-antikink
pairs under the action of the random force. For the case
considered here, i.e., for the envelope solitons, the FP
equations corresponding to the physically important pa-

1063-651X/93/48(1)/5(4)/$06.00 48

rameters of the soliton amplitude n and the velocity v
are rather complicated in the general case. However,
we will demonstrate that integrating the full distribution
function Q(n,v) over the velocity, one can derive the FP
equation for the amplitude distribution function P(n).
This equation can be investigated in a fully analytical
form. We demonstrate that, whatever the initial distri-
bution, its asymptotic form (at ¢t — oo) takes a very
simple exponential form. Thus the steady-state mean
value of the amplitude proves to be quite universal, de-
pending only on properties of the nonlinear medium and
on the temperature. We also demonstrate that the FP
equation naturally conserves the total number of solitons.
Thus, we expect that the time asymptotic mean density
of solitons is not universal, being determined by the ini-
tial state of the system. At the end of the paper, we
briefly discuss the situation for the case of parametric
(multiplicative) noise in Eq. (1). Our preliminary infer-
ence is that, unlike additive noise, the parametric noise
does not support any nontrivial distribution over the am-
plitudes of the envelope solitons: The integral that de-
termines the total number of solitons strongly diverges
at the infinitesimal amplitudes. In the concluding part
of the paper, we also discuss physical applications of the
model considered. We conclude that, among the possible
applications, the most interesting may be the analysis of
thermally induced noise in a nonlinear optical medium.

II. FOKKER-PLANCK EQUATION

To consider the small-amplitude envelope solitons, one
starts from the well-known procedure of taking the small-
amplitude limit of Eq. (1) [6]. One inserts into Eq. (1),

d(z,t) = u(z, t)e ™ + c.c., (4)

where the complex envelope u(z,t) is assumed to be a
slowly varying function of ¢t compared with exp(—it).
Then, after an evident rescaling, the effective NLS equa-
tion can be written as follows:

iUy + Upe + 2|u|?u = —iau + f(z,t)e ™. (5)

Keeping only the slow time variation in the equation for
u(z, t), the main contribution from the Fourier expansion
of the random function f(z,t) will come for frequencies w
close to wg = 1. Thus one expands the random function
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f(z,t) as a Fourier integral and then keeps only the fre-
quencies w sufficiently close to wo = 1, which combined
with e on the right-hand side (rhs) of Eq. (5) would
comply with the condition of the slow evolution. The
omission of the nonresonant terms could be done later,
but this, however, would complicate the calculations and
hide the main points of this paper. As will be explained
below the formal representation in (5) is consistent for
the derivation of the FP equation.
The unperturbed NLS soliton has the form

usol(T, t) = 2insech{2n[z — £(¢)]}
X exp (%vw — Zi—'u% + i0(t)> , (6)

where 7 and v are its amplitude and velocity. The center-
of-mass coordinate £(t) and the phase 6(t) evolve simply
with time as follows:

d¢ a .,

E =, EZ = 477 . (7)

The unperturbed NLS equation has an infinite set of inte-
grals of motion, the simplest of which are the wave action
(also called “number of particles”)

+o0
N= /_ lu(z)|2de (8)

and the momentum

+oo
K=i / u? (2)u(=)ds. 9)

For the soliton in (6),

Nsol = 47’7 Ksol = 2771)' (10)

In the presence of the perturbations in the NLS model
in Eq. (5), one can derive evolution equations for the
amplitude and the velocity, using the so-called balance
equations for the wave action and momentum [2]. A sim-
ple algebra yields

dn

i “+oo .
= = —2am — 1 /oo [u*(z)f(z,t)e* — c.c]dz, (11)

dv 1 [t ;
&= 2 / [ul(z)f(z,t)e + c.c.]dz

w [T
_+.__

in [u*(z)f(z,t)e™ — c.c.]dz. (12)

—00

To derive the corresponding FP equation, we consider
Egs. (11) and (12), together with Eqgs. (7), as the general
Langevin equations [7]. The perturbing terms in Eq. (5)
induce small corrections to Egs. (7); however, they may
be neglected in the lowest approximation of the pertur-
bation theory [5]. The FP equation for the distribution
function Q(n,v,§,6;t) corresponding to these Langevin
equations can be derived, making use of the correlations
in (2), and it takes a pretty involved form. To simplify
the equation, one can integrate it over v, £, and 6, in

an attempt to derive the FP equation for the amplitude
distribution function

“+oo “+oo 27
Pa= [ v [ /0 dBQ(n,v,6,0,1).  (13)

The integration eliminates all the terms of the full FP
equation that are full derivatives with respect to any of
the variables v, £, and 6. The important fact, which
can be noticed without detailed calculations, is that the
coefficients of the surviving terms of the equation depend
only on 7, but not on the integrated variables. For the
final derivation, it is necessary to mention that, when
taking correlations of the rhs’s of Eqs. (11) and (12)
with the use of Egs. (2), one will obtain terms of two
different types. There will be terms that contain exp(=+it)
and rapidly oscillating ones containing exp(+2it). We
drop the latter terms, and one can readily check that this
exactly corresponds to using from the very beginning the
approximation in (5), when only the slowly oscillating
Fourier components of the term f(z,t)e* are retained.

Finally, the FP equation for the integrated distribution
function (13) takes the form

oP Io} 9?

- = _'é'ﬁ[ 12 — 2an)P] + 3—1]2(%6217}))' (14)
Recall that €? is the correlation amplitude in Eq. (2b)
and measures the temperature of our system according
to Eq. (3).

The FP equation (14) satisfies, as it should, the con-
servation of the total probability: it can be represented

in the form %—1: = —%J , where the current is given by
1., dP
J = —2anP — ~e?n—. 15
anP — 1% (15)

An important property of the current (15) is the fact
that it identically vanishes at 7 = 0, provided that P and
dP/dt are finite at this point. This implies that there is
no flux of probability across the point n = 0, and the
total number of the solitons, which is proportional to
f0°° P(n)dn, is conserved. This actually means that we
should not deal with the problem of the creation of new
solitons, which would exist for a nonzero value of J(7) at
n = 0. It is well known that the creation of new solitons
by a perturbation is a very hard problem [2].

III. SOLUTION OF THE FOKKER-PLANCK
EQUATION

A. Regular solutions

Equation (14) falls into a general class of FP equations
considered in Refs. [12] and [13]. Below we will develop
an analysis of Eq. (13) in a form slightly different from
that put forward in these papers. However, all the results
that we will obtain can also be obtained by means of the
technique of Refs. [12] and [13]. First, we will look for
eigenmodes of Eq. (14) in the form

P(n,t) = e” " R(n) (16)

with a decay rate v. Insertion of Eq. (16) into Eq. (14)
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brings us to the equation

d’R dR
yzy—2+(1+y)E+(1+F)R=0, (17)
where y = 8ae 2 and ' = v/2a. Equation (17) is
exactly the confluent hypergeometric equation, if the sign
of y in (17) is changed (y — —y), with the standard
parameters ¢ = 1 + I' and b = 1 [8]. The solutions
that are finite at y = 0 and decay at y — oo are given
by the Kummer function M (1 + I', 1, —y) [8]. The limit
of this function at I' = 0 is just exp(—y). Note that
the condition that provides for the vanishing of M(1 +
T, 1, —y) faster than y~! is T" > 0, which assures that the
total probability converges. This is also the condition
that assures that the solutions in (16) do not grow as
t — oo.

Thus, if one deals with an arbitrary initial distribution
function Py(n), which is finite at 7 = 0 and vanishes at
7 — 00, it is natural to represent it as

Py(n) = /(; M(1 + 8ae™2%v,1, —8ae™2n)I(vy)dy
o= —8axe " “n
+ze , (18)

with a kernel II(I"). In the representation of Eq. (18), we
took into account the fact that, for any positive T,

/ M(1+T,1,-y)dy =0,
0

so that all the total probability, f0°° Py(n)dn = 1, is borne
by the additional term corresponding to v = 0. Then,
looking at Eq. (16), one immediately concludes that, at
t > 0, the distribution function becomes

e 8a 8a _
P(n,t) = /0 M (1 + 6—2’ 1,——6*2Q> H(’)’)e 'Ytd’)’

8a __8an
— €

e (19)
Thus, at £ = oo the first term in Eq. (19) dies out, and
the distribution function takes the static form

8a _sa
Pu(m) = e . (20)

This static solution can as well be obtained directly from
the class of static exponential solutions for FP equations
of a more general form found in Ref. [12]. By substituting
for € from Eq. (3) in (20) the argument of the exponential
becomes —N;,1/2kT, where N, is clearly the energy for
the case of the electromagnetic field, as seen from Eq.
(8), where | u(z) |2 is the energy density of the electric
field. Thus Eq. (20) is a typical Maxwellian distribution.

B. Singular solutions

This case corresponds to an initial distribution Py (n),
which has an integrable singularity at n = 0; e.g.,
Py(n) ~ 1n(1/n). The confluent hypergeometric equation
(17) has a second linearly independent solution, which is

usually designated as U(1+4T,1, —y) [8]. With I positive
these functions vanish at y — +oo faster than y~!, and
they all have a logarithmic singularity at y = 0, so that
the corresponding total probability converges. Therefore,
one can consider an initial distribution with an integrable
singularity at n = 0, represented by Eq. (19) with M re-
placed by an arbitrary linear combination of M and U.
However, the additional term in Eq. (15) corresponding
to I' = 0 can only be taken in the purely exponential
form. The second independent solution at v = 0 is

vody
e—y/ v Y (21)
Y

7
o )

which goes like y ! at y — oo and, thus, does not provide
the convergence of the total probability.

The generalized solution with the logarithmic singu-
larity keeps it at any finite value of ¢, but the singularity
vanishes assymptotically at ¢ — oo. It is important to
notice that the logarithmic singularity yields a nonzero
value of the current at n = 0 [see Eq. (15)]. Thus, the gen-
eralized solution implies a change in the total number of
solitons. Using Eq. (186), it is easy to see that the change

~

is finite, provided that the integral [;° II (v)y~'dy con-

verges, ﬁ (v) being the kernel corresponding to the con-
tribution of the U functions to the generalized solution.
The real meaning of the generalized solution remains un-
clear because the production of new solitons of the fluc-
tuating force is not properly comprised of the underlying
Langevin equations (11) and (12); actually, this process
should be analyzed separately (being a difficult problem,
as was mentioned above). If one tries to use the function
in (21) as another static distribution, it gives rise to a
nonzero value of the current in (15) at n = 0. The cor-
responding value of J(0) is positive, and this permanent
influx of new solitons is the physical explanation for the
divergence of the total probability corresponding to the
solution (21). The existence of the singular stationary
solutions of the FP equations is known in other contexts,
and sometimes they can be given a physical meaning,
depending on a particular situation; see, e.g., Ref. [13].

IV. PHYSICAL APPLICATIONS
AND GENERALIZATIONS

The NLS equation, considered as the small-amplitude
version of the full SG model, appears in a number of phys-
ical systems. Two common examples are long Josephson
junctions [4] and charge-density-wave conductors [6]. In
the former system, the small-amplitude envelope solitons
are not a physically important entity. In the latter sys-
tem, they may play a significant role, as they should de-
termine the response of the conductor to an external ac
electric signal. However, it seems more promising to ap-
ply the results obtained to physical systems in which the
cubic nonlinearity plays a fundamental role. Important
examples of such nonlinear media are known in optics,
viz., optical fibers and planar wave guides with the Kerr
nonlinearity (see, e.g., Ref. [9]). In this case, the quantity
(8) has the meaning of the electromagnetic field energy,
and thus Eq. (20) gives nothing but the distribution
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of solitons over energy in the state of thermodynamical
equilibrium. In particular, the mean energy of the soliton
is

— _ €2

B=41=, (22)
the bar standing for the averaging over the static distri-
bution. These results, applied to the Kerr media, may be
of real interest, as they yield the statistical characteris-
tics of the equilibrium electromagnetic noise (to be more
accurate, of the soliton component of the “full” noise).
On the other hand, it is necessary to remember that,
while we are able to determine physical quantities like
the mean soliton’s energy, given in (22), we cannot find
the density of solitons. In the framework of the devel-
oped approach, the density is determined by the initial
condition. So, the FP equation yields only a part of the
full statistical information.

The FP equation for the envelope solitons can be gen-
eralized in various directions. First of all, one can con-
sider the dissipation terms of a more general type. If one
starts from the SG model of the long Josephson junc-
tion, it is well known that the dissipative term written
in Eq. (10) takes into account the shunt losses, while the
so-called surface losses give rise to the additional term
Butes [10]. In terms of the effective NLS equation, the
new term would read ifu,,. However, to comply with
the FDT, one would also have to modify the correlations
in (2b), adding new terms proportional to a derivative of
the § function. We will not pursue this generalization in
the present work.

Another extension is the case of parametric noise. As a
particular case one can consider a quasi-one-dimensional
ferromagnet in an external magnetic field [2], which is
described by a perturbed SG model. Assuming a ran-
domly fluctuating field, one can bring the corresponding

NLS equation for the small-amplitude excitations to the
following form [cf. Eq. (5)]:

g + Uge + 2|ul?u = —iau + f(z,t)eu, (23)

where f(z,t) is again the Gaussian random function. Af-
ter some algebra, the FP equation for the amplitude dis-
tribution function can be found as follows [cf. Eq. (14)]:

oP

d 02
ot = gpl20m+ *n’) P +

a—nz(§€27]3p).

(24)

A crucial difference from Eq. (14) is that this time the
effective diffusion coefficient is ~ 3. The attempt to find

a static distribution for Eq. (24) leads to the expression
[cf. Eq. (20)]

o (n) = const x 7;_3/26_3“/62". (25)

Actually this solution cannot have any physical mean-
ing: the distribution function does not vanish at n = oo,
and it contains an irregular singularity at n = 0. How-
ever, the solution in (25) can be regarded as a hint of the
fact that parametric noise, unlike additive noise, cannot
support any distribution of envelope solitons; the total
probability collapses to the point n = 0. This parametric
noise problem, which has been treated within stochas-
tic perturbation for Gaussian random noise [11], requires
further analysis.
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